4-3 COMBINING RATIONAL EXPRESSIONS WITH ADDITION AND SUBTRACTION

Occasionally it will be important to be able to combine two or more rational expressions by addition. I mind two key principles that dictate fraction addition.

TWO GUIDELINES FOR ADDITION AND SUBTRACTION OF FRACTIONS

- 1. Fractions must have a common denominator.
- 2. Denominators can only be changed by multiplying the overall fraction by one.

Exercise #1: Combine each of the following fractions by first finding a common denominator. Express your answers in simplest form.

(a)
$$\frac{2x-5}{4x} + \frac{4x+2}{6x}$$

(b)
$$\frac{4x-1}{5x} + \frac{x+5}{10}$$

(c)
$$\frac{3}{4x} + \frac{1}{2x^2}$$

Each of the combinations in *Exercise* #1 should have been reasonably easy because each denominator was monomial in nature. If this is not the case, then it is wise to **factor** the denominators before trying to find a common denominator.

Exercise #2: Combine each of the following fractions by factoring the denominators first. Then find a common denominator and add.

(a)
$$\frac{4}{5y-15} + \frac{5}{y^2-9}$$

(b)
$$\frac{x-3}{x^2-9x+20} + \frac{2}{x^2-6x+8}$$

Subtraction of rational expressions is especially challenging because of errors that naturally arise when students forget to distribute the subtraction (or the multiplication by -1). Still, with careful execution, these problems are no different than their addition counterparts.

Exercise #3: Perform each of the following subtraction problems. Express your answers in simplest form.

(a)
$$\frac{3x+7}{x^2-4} - \frac{x+3}{x^2-4}$$

(b)
$$\frac{x-3}{4x^2-1} - \frac{2}{10x+5}$$

(c)
$$\frac{x}{x^2-4} - \frac{6}{x^2+8x-20}$$

(d)
$$\frac{x-2}{x^2+5x+4} - \frac{8}{x^2+12x+32}$$

Exercise #4: Which of the following is equivalent to $\frac{1}{x-1} - \frac{1}{x}$?

$$(1) \frac{x}{x-1}$$

(3)
$$\frac{1}{x^2 - x}$$

(2)
$$\frac{1}{x-x^2}$$

$$(4) \ \frac{x}{x^2 - 1}$$